A Liquid-Metal Based Spiral Magnetohydrodynamic Micropump
نویسندگان
چکیده
منابع مشابه
A Liquid-Metal Based Spiral Magnetohydrodynamic Micropump
A liquid-metal based spiral magnetohydrodynamic (MHD) micropump is proposed in this work. The micropump was fabricated in a polydimethylsiloxane (PDMS)-glass hybrid microfluidic chip. This pump utilized two parallel liquid-metal-filled channels as electrodes to generate a parallel electrical field across the pumping channel between the two electrodes. To prevent contact and cross contamination ...
متن کاملA liquid metal flume for free surface magnetohydrodynamic experiments.
We present an experiment designed to study magnetohydrodynamic effects in free surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Do...
متن کاملA high current density DC magnetohydrodynamic (MHD) micropump.
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-microm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined frit-like structure that connects the pumping channel to side reservoirs, where platinum ele...
متن کاملModeling infinite/axisymmetric liquid metal magnetohydrodynamic free surface flows
Over the past several years, as part of the Advanced Power Extraction (APEX) project, liquid metal magnetohydrodynamic (MHD) film and jet flows have been modeled using the assumption of axisymmetry to simplify the governing equations to a more tractable two-dimensional (2D) form. The results of these 2D simulations as they pertain to liquid wall and divertor flows is presented here. The effect ...
متن کاملLiquid metal-based plasmonics.
We demonstrate that liquid metals support surface plasmon-polaritons (SPPs) at terahertz (THz) frequencies, and can thus serve as an attractive material system for a wide variety of plasmonic and metamaterial applications. We use eutectic gallium indium (EGaIn) as the liquid metal injected into a polydimethylsiloxane (PDMS) mold fabricated by soft lithography techniques. Using this approach, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Micromachines
سال: 2017
ISSN: 2072-666X
DOI: 10.3390/mi8120365